Covariant Completely Positive Linear Maps between Locally C-algebras
نویسنده
چکیده
We prove a covariant version of the KSGNS (Kasparov, Stinespring, Gel’fand,Naimark,Segal) construction for completely positive linear maps between locally C-algebras. As an application of this construction, we show that a covariant completely positive linear map ρ from a locally C-algebra A to another locally C -algebra B with respect to a locally C-dynamical system (G,A,α) extends to a completely positive linear map on the crossed product A×α G.
منابع مشابه
A class of certain properties of approximately n-multiplicative maps between locally multiplicatively convex algebras
We extend the notion of approximately multiplicative to approximately n-multiplicative maps between locally multiplicatively convex algebras and study some properties of these maps. We prove that every approximately n-multiplicative linear functional on a functionally continuous locally multiplicatively convex algebra is continuous. We also study the relationship between approximately mu...
متن کاملFourier-stieltjes Algebras of Locally Compact Groupoids
For locally compact groups, Fourier algebras and Fourier-Stieltjes algebras have proved to be useful dual objects. They encode the representation theory of the group via the positive deenite functions on the group: positive deenite functions correspond to cyclic representations and span these algebras as linear spaces. They encode information about the algebra of the group in the geometry of th...
متن کاملA Covariant Stinespring Type Theorem for Τ-maps
Let τ be a linear map from a unital C∗-algebra A to a von Neumann algebra B and let C be a unital C∗-algebra. A map T from a Hilbert A-module E to a von Neumann C-B module F is called a τ -map if 〈T (x), T (y)〉 = τ(〈x, y〉) for all x, y ∈ E. A Stinespring type theorem for τ -maps and its covariant version are obtained when τ is completely positive. We show that there is a bijective correspondenc...
متن کاملSpectrum Preserving Linear Maps Between Banach Algebras
In this paper we show that if A is a unital Banach algebra and B is a purely innite C*-algebra such that has a non-zero commutative maximal ideal and $phi:A rightarrow B$ is a unital surjective spectrum preserving linear map. Then $phi$ is a Jordan homomorphism.
متن کاملOn Preserving Properties of Linear Maps on $C^{*}$-algebras
Let $A$ and $B$ be two unital $C^{*}$-algebras and $varphi:A rightarrow B$ be a linear map. In this paper, we investigate the structure of linear maps between two $C^{*}$-algebras that preserve a certain property or relation. In particular, we show that if $varphi$ is unital, $B$ is commutative and $V(varphi(a)^{*}varphi(b))subseteq V(a^{*}b)$ for all $a,bin A$, then $varphi$ is a $*$-homomorph...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008